Orientability, De Rham Cohomology

S. Allais, M. Joseph

Exercise 1 (Orientability of the sphere). Prove that \mathbb{S}^{n} is orientable.
Exercise 2 (Orientability of the projective space). 1. Show that if \widehat{M} is orientable and connected, and $M=\widehat{M} / \Gamma$ is the quotient of M by a group of diffeomorphisms (acting properly discontinuously), one of which reverses the orientation of \widehat{M}, then M is non-orientable.
2. Deduce that $\mathbb{R}^{2 n}$ is non-orientable.
3. Show that $\mathbb{R} \mathbb{R}^{2 n+1}$ is orientable.

Exercise 3 (Homotopy equivalence). A smooth map $f: M \rightarrow N$ is a homotopy equivalence if there exists a smooth map $g: N \rightarrow M$ such that $f \circ g$ is homotopic to $i d_{N}$ and $g \circ f$ is homotopic to $i d_{M}$. In this case, we say that M and N have the same homotopy type.

1. Prove that if M and N have the same homotopy type, then $H^{*}(M)=H^{*}(N)$.
2. Prove that $H^{*}\left(M \times \mathbb{R}^{d}\right)=H^{*}(M)$.
3. Prove that $H^{*}\left(\mathbb{R}^{n} \backslash\{0\}\right)=H^{*}\left(\mathbb{S}^{n-1}\right)$.

Exercise 4 (Orientability). 1. Show that any parallelizable manifold is orientable.
2. Show that a product of two orientable manifolds is itself orientable.
3. Show that the tangent bundle of a manifold is an orientable manifold.
4. Give an explicit volume form on the cotangent bundle.

Exercise 5 (Divergence and curl of a vector field (continued)). 1. Let $(E,\langle\cdot, \cdot\rangle)$ be an oriented Euclidean space of dimension 3. Show that any 1-form of E can be written as $\langle X, \cdot\rangle$ for some vector field X on E. Deduce that for every vector field X such that $\operatorname{div}(X)=0$, there exists a vector field A of E such that $X=\operatorname{curl} A$.
2. Show that for every vector field X such that $\operatorname{curl} X=0$, there exists a smooth function $f: E \rightarrow \mathbb{R}$ such that $X=\nabla f$.
3. Let $D:=\{(0,0)\} \times \mathbb{R} \subset \mathbb{R}^{3}$. Show that $H^{*}\left(\mathbb{R}^{3} \backslash D\right) \simeq H^{*}\left(\mathbb{R}^{2} \backslash 0\right)$.
4. We recall that $H^{1}\left(\mathbb{R}^{2} \backslash 0\right)$ is generated by the angular 1-form $[\mathrm{d} \theta]$ and $H^{2}\left(\mathbb{R}^{2} \backslash 0\right)=0$. Let R be the vector field of $\mathbb{R}^{3} \backslash D$ defined by

$$
R(r \cos \theta, r \sin \theta, z):=-\sin \theta \frac{\partial}{\partial x}+\cos \theta \frac{\partial}{\partial y}, \quad \forall r>0, \forall \theta \in \mathbb{R}, \forall z \in \mathbb{R}
$$

Show that $H^{1}\left(\mathbb{R}^{3} \backslash D\right)$ is generated by $\langle R, \cdot\rangle$.
5. Deduce that for every vector field X of $\mathbb{R}^{3} \backslash D$ such that curl $X=0$, there exists $\lambda \in \mathbb{R}$ and a smooth $f: \mathbb{R}^{3} \backslash D \rightarrow \mathbb{R}$ such that $X=\lambda R+\nabla f$. What about those vector fields satisfying $\operatorname{div} X=0$?
6. Let α be the 1-form $\langle X, \cdot\rangle$. Prove that

$$
\lambda=\frac{1}{2 \pi} \int_{\gamma} \alpha,
$$

where $\gamma(t)=(\cos (t), \sin (t), 0)$.

